- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Eichler, Guy (3)
-
Carloni, Luca P (2)
-
Chiu, Kuan-Lin (2)
-
Seyoum, Biruk (2)
-
Carloni, Luca (1)
-
Clair, Judicael (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Neuromorphic computing is an emerging field with the potential to offer performance and energy-efficiency gains over traditional machine learning approaches. Most neuromorphic hardware, however, has been designed with limited concerns to the problem of integrating it with other components in a heterogeneous System-on-Chip (SoC). Building on a state-of-the-art reconfigurable neuromorphic architecture, we present the design of a neuromorphic hardware accelerator equipped with a programmable interface that simplifies both the integration into an SoC and communication with the processor present on the SoC. To optimize the allocation of on-chip resources, we develop an optimizer to restructure existing neuromorphic models for a given hardware architecture, and perform design-space exploration to find highly efficient implementations. We conduct experiments with various FPGA-based prototypes of many-accelerator SoCs, where Linux-based applications running on a RISC-V processor invoke Pareto-optimal implementations of our accelerator alongside third-party accelerators. These experiments demonstrate that our neuromorphic hardware, which is up to 89× faster and 170× more energy efficient after applying our optimizer, can be used in synergy with other accelerators for different application purposes.more » « less
-
Eichler, Guy; Seyoum, Biruk; Chiu, Kuan-Lin; Carloni, Luca P (, IEEE)
-
Chiu, Kuan-Lin; Eichler, Guy; Seyoum, Biruk; Carloni, Luca (, Cyber-Physical Systems and Internet of Things Week)
An official website of the United States government
